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MgegO and Ca0 as Qubit Host Materials: Excellent Spin Coherence Time

Estimated spin coherence time T,

# Material T. (ms) # Material T, (ms) # Material T (ms)
1 CeO: 47 12 CaS 23 23 WS 11

2 FeO 36 13 Ca2NiWOs 19 24 Sr2Si(S207)4 11

3 CaO 34 14 S 19 25 Sr2Ge(S207)4 11

4  CaSOs 29 15 CaWOq4 18 26 CaCOs 11

5 Ce(S0s)2 29 16 CSu 18 27 FeS, 10

6 SO3 29 17 FeoNiO4 18

7 FeSO4 28 18 SgO 17 138 SiO, 2.7
8 CaSs01o 28 19 FeWO, 16 298 ZnO 1.9
9 CazWOe 27 20 NiSOq 15 709 SiC 1.1
10 WS20¢ 25 21 WOs3 13 936 diamond 0.89
11  CazxFeWOs 24 22 NiWO4 12 1125 MgO 0.60

S. Kanai et al., preprint arXiv:2102.02986 (2021).
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What are suitable defects in MgO and CaO ?
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Intrinsic Defects in MgO
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e No excitations
within band gap

Magnesium/Calcium Vacancy

44

e S=1 groundstate
e No unoccupied defect orbital
e Only ionization possible
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cDFT [eV] | Exp. Ref. [eV] | Theo. Ref. [eV]
Ni:MgO | 1.20 (1.18) | 1.00%(0.97)% 0.84 (0.73)°
Pt:MgO | 2.31 (2.26) 2.70 (2.51)4
Ni:CaO | 0.56 (0.54)
Pt:CaO | 1.45 (1.40) 1.87 (1.71)*

1 J.E. Ralph and M.G. Townsend, J. Phys. C: Solid State Phys. 3, 8 (1970).
2 S.A. Payne, Phys. Rev. B 41, 6109 (1990).

3 G.D. Cheng, L. Yan, and Y. Chen, J. Mater. Sci. 52, 8200 (2017).

4 C. Zhou, Z. Li, and J. Yang, Comput. Mater. Sci. 181, 109754 (2020).
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Localized 4f orbitals not well described within DFT — DFT+U yields corrections
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Localized 4f orbitals not well described within DFT — DFT+U yields corrections

e 4f-5d energy difference increases
with increasing U

e Position of 5d orbitals unchanged
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e What is the correct U?

Hubbard U [eV]

H. Ma et al., J. Chem. Theory Comput. 17, 4, 2116 (2021).
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1 T. Kato, J. Lumin. 192, 316 (2017).
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Radiative Lifetimes

DFT

Ni:MgO H183 s
Pt:MgO 048 s
Cet:MgO 53 ns
NV ™ :Diamond | 14 ns
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Conclusions

e First-principles study of defect excitations in MgO and CaO
« Doping with Ni, Pt, and Ce as possible qubit candidates
e Excitations in good agreement with available experimental data

Outlook

 Study of high-spin defect complexes
e First-principles investigation of spin coherence times

THANK YOU FOR YOUR ATTENTION!
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