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Strongly-correlated states in spin defects used as qubits / ’

Example: 2 electrons in 2 degenerate orbitals
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Spin singlet state: 1
S=0 a

Spin triplet states: 1
S=1 =
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Strongly-correlated states: important
for the initialization and read-out of
spins, yet challenging for mean-field
theories such as Kohn-Sham Density
Functional Theory (DFT)

Most existing methods to describe
strongly correlated states are
computationally very expensive
(limited to tens of electrons):

* Dynamical mean-field theory

* Quantum Monte-Carlo

* Multi-reference quantum chemistry
methods




From dielectric screening to quantum embedding
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For the use of spin defects to realize qubits, electronic states should be localized in well defined
regions of space and separated in energy from the levels of the host solid

Multi-level description Ww=V+W,
/ \ [Quantum embedding theory \
B Dielectric

Environment
(DFT)

screening
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Active space

Coulomb interaction

Dielectric

screening from
\ environmeu
A — higher level theory

B — lower level theory
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Quantum embedding theory

W=V+W,
Quantum
; algorithms
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Features of the embedding theory:

Based on many body perturbation theory (the GW method)
No explicit summation over empty electronic states [l scalable to large systems

Dielectric screening is computed including exchange-correlation effects, thus going beyond
the random phase approximation (RPA)

The use of hybrid functions, for example, dielectric-dependent hybrid functional (DDH), is
straightforward and yields improved results over GGA (PBE)
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Quantum embedding theory applied to spin-defects / ’
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We applied the quantum embedding theory to study NV-in diamond & group-IV° defects in
diamond. We choose active spaces to include defect levels and band edge states
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* Finite-field calculation of
: http://pyscf.or
exchange-correlation kernel ) PHIPYSELOMS
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Electronic structure of NV- in diamond

Single-electron levels
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« Ordering and symmetry of low-lying states are correctly reproduced

« We obtained better agreement with experiments by computing dielectric screening

beyond the RPA

Ma, H., Sheng, N., Govoni, M., & Galli, G. Phys. Chem. Chem. Phys. (2020) -



Electronic structure of group-1V? defects in diamond / ’
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We confirmed the existence of the 34,,/2E, manifold proposed by experimental studies
Our results on singlet states provide a possible explanation for the experimental difficulty to perform
optical spin polarization of SiV°

Possible intersystem crossing in SnV? and PbV°
Ma, H., Sheng, N., Govoni, M., & Galli, G. Phys.

Spin-orbit coupling effects are negligible on defect states Chem. Chem. Phys. (2020)




Conclusions /
\
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« We used a quantum embedding theory (QET) to investigate and predict strongly-correlated
electronic states, e.g. singlet states for spin defects in diamond. These states cannot be described
with DFT. Our results may help the experimental design of qubits.

« The QET used here is scalable to large systems.

Going beyond the RPA in the calculation of dielectric screening of the environment provides results
more accurate than those at the RPA level.
Ma, H., Govoni, M. & Galli, G. npj Comput Mater 6, 85 (2020)
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DFT defect orbitals
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DFT defect orbitals
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