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Overview

@ Introduction to Computational Quantum Physics
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Equations of motion

A quantum system of N-interacting particles is governed by

@ wavefunction |¢(r,...,ry; t)) (zero-temperature):
0 g .
pw [y = H ), /|w| dr=1 (Schrédinger equation)

with |¢)) we can compute expectatlon value (1|O[4)) such as energy E = (|H|).
Formally [¢(t)) = e—iHt [1(0)). If A is time-independent —s H |¢)) = E [4)).

@ density matrix p(ry, ..., ryir, ..., ry; t) (finite-temperature):

0 .
iaﬁ =[H,p], pisPSD, Tr(p)=1 (Von Neumann equation),
with 5 we can compute expectation value Tr(ﬁf)) such as energy E = Tr([’)I:I).
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Second quantization

Usually, |¢) need to be
e Symmetric over V (ri, ;) (Bosons)
o Anti-symmetric over V (rj, rj) (Fermions)
Introducing Slater basis sets ¢(r1,...,ry) = ﬁ >p (i)P¢1(XP(1))¢2(XP(2)) - On(Xp(n)),
where {¢;} € Lo(R3?) and [ |¢;|?dr = 1.
Denote ¢(r1,...,rn) = [01,...,dN) = [Ngy, Ngys - - .) i= 6;21&;2 . ?:;;N |2)
é:;l_ and ¢, satisfy
e Commutation relation (Bosons)
@ Anti-commutation relation (Fermions)
With this notation, we can also denote H. In general:

N oata atata a
H= T,'J'C,TCJ' + \/,jk/C,- Cj C1Ck + -

- includes higher order interactions and those between different particles
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Quantum field theory and path integral

QFT is essentially quantum mechanics with infinite degrees of freedom!
@ Real-time path integral (one-particle example)

o [4(t)) = e [4(0))
e Time evolution operator: U=e
° <le|0|q|> <qf|e—iTAte—iVAt A e iTAt

S D & i #HOD here | = T — v

@ Imaginary-time path integral (one-particle example)

—ift _ [e—iFIAt]N

e VAL AL\ emiTAg=iVAL gy =

E .
o Density matrix (qfp|ai) = (qfle=?"|qi) = f:((oﬁ ~%Dq e o ITH(9.9) \here H= T + V

@ The extreme path of the action gives classical mechanlcs!
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Perturbation theory

How can QFT help us compute?

Define pg = e T Then <©> = Tr(ﬁ(A)) = Tr(ﬁO)Tr( Tr(po)

@ From Wick theorem, the above integral can be simplified to a series of Feynman
diagrams, which can be further evaluated by Gy = (é}éj)o (analytical expression exists).

@ Approximations are ususally made when choosing specific Feynman diagrams for suitable

physical applications.
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Many-body Green's function methods

© Main target: one-particle Green's function Gj = —i <T[c,-c;f]) and self-energy
Y = G&l — G71. From G we can extract particle density, density matrix, and charge
excitation energies. From X we can extract quasiparticle energies and quasiparticle
lifetime.

@ Both many-body perturbation theory (MBPT) and dynamical mean-field theory (DMFT)
belong to many-body Green's function methods.

@® DMFT: local Feynman diagrams for strong-coupling systems
@ MBPT: Feynman diagrams from perturbative expansions for weak-coupling systems
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Many-body perturbation theory?

S Q@ X, M(P), W, T are introduced renormalized
I > quantities from perturbation expansion.
=i G =Gy + GeXG
S / \ @ W — screened Coulomb interaction, G —
potential | WV, sef._ G provagator one particle Green's function
consistent
- o e © G'=G1+Yandvi=WT1+Pare
3G .
Dyson equations.
[I——T .
Polarization . Vertex Q@ If I &1 — random phase approximation
operator 1=—HGGT function . ) .
Q X ~ iGW — the GW approximation
Figure 1: Hedin's pentagon. @ Second order: Bethe-Salpeter equation

IRichard M Martin, Lucia Reining, and David M Ceperley. Interacting electrons. Cambridge University Press, 2016.
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Dynamical mean-field theory?

A
Local &
0 = &—0C—0O ()

Figure 2: Graphic illustration of dynamical mean-field theory.

© Assume self-energy ¥ is local in space (exact in infinite dimensions).

@ Hpybridization function A represents the interaction between the site and the environment.

2Richard M Martin, Lucia Reining, and David M Ceperley. Interacting electrons. Cambridge University Press, 2016.
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Variational methods

Low-lying (ground-state) wavefunction and energy from Hiy = E can be obtained from
minimization problem: E = min (¢|H[v) — E ((¢|¢) — 1)

@ Variational Monte Carlo: <I:I> = 7@?&2‘)71';(#5;» = <f¢1£?lg22> ’:’l;/z(a";n

o Power method: [¢) o lim g e [¢9) and (O) = %IO%M

- Projector Quantum Monte Carlo, Auxiliary-field Quantum Monte Carlo etc
@ Trucated Galerkin space: post-Hartree-Fock methods

@ Density-matrix renormalization group (based on tensor-network ansatz)
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Tensor-train representation

rn r rd—1
(i oy oig) = Y D> Y Gi(i,01)Go(oa, 2, 2) -+ Gg(ag—1, i)
ar1=1ar=1 ag_1=1
rd—1
P . . ./
H(’l7’15’27’27"'7’87’8 Z Z Z Gl I1,I1,a1)GQ(O[]_,I2,I2,OéQ) 'Gd(ad—la’d7ld)
a1=1 ar=1 ag_1=1
o TN o Qg1 1 if i,
Gy Ga Ga
aq [65) Qq—1
Gy G> Ga
11 io 1d
i io id
Figure 3: Tensor diagram for tensor-train/matrix product
state (TT/MPS). Figure 4: Tensor diagram for matrix product operator

(MPO).
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Tree tensor network

(11,12,..., Z Z Gf(a%,a%)

2.2 2
alazfla azaza;=1

Gll(a%? ai a%)GQ (042, 043, a421)

Glz(ai i, i2)G22(a%7 13, I'4)G§(04§, Is, iG)GZ%(azv i7, i8)

Figure 5: Tensor diagram for a 3-level binary tree
tensor network (TTN).
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Density-matrix renormalization group

E = min (W|Hp) — E ((ly) — 1)

Express H as a MPO and use an MPS ansatz for [¢)):

Figure 6: Graphic illustration of density-matrix renormalization group.
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Density-matrix renormalization group

DMRG step 1: DMRG step 2:

@ DMRG uses tensor network as ansatz.
@ DMRG is least squares method for local tensor cores rather than full space.

© DMRG is ideally linearly scaled in number of cores.
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Full and selected configuration interaction

e Full configuration interaction (exact diagonalization)

(®o| H|®o) (o] H|P7)
Ha = | (@0l H|®]) (@] Ao

Diagonalization
—

1\

@ Selected configuration interaction
Limit the space of W to low order, such as

Y~ by + Z il

<(DO | I:I‘¢0> <(DO | /:/’¢r> Diagonalization
H ~ A ~ a —
“ <<¢O|Hrd>;> (& | H|or)
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Quantum Monte Carlo

@ Variational qute Carlo R
E(a) = IAv@) _ f< W(a)? ) HW(a))
o

V() V()
Emin = ming E(a)
@ Projector Monte Carlo
W) o limp_yae e BH [ ) — [WNT1) = e=ATH |yn)
(P|H[W)

Emin = limp D)
o Path integral Monte Carlo
Sample over the path integral
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Summary of computational methods for quantum physics

Many-Body Perturbation Theory

Dynamical Mean-Field Theory
Quantum Field Theory Effective Field Theory

Path-Integral Monte Carlo

Continuous-Time Quantum Monte Carlo

Density Matrix Renormalization Group

Post-Hartree-Fock

Variational Monte Carlo
; Projector Quantum Monte Carlo

Density Functional Theory

Equilibrium Variational Ansatz

Quantum Many-Body Density Functional Theory Time-Dependent Density Functional Theory

Theory and Methods Density Functional Perturbation Theory

Nonequilibrium Many-Body Perturbation Theory

Keldysh Field Theory

Nonequilibrium Dynamical Mean-Field Theory

) Markovian
Quantum Master Equation

Nonequilibrium
Non-Markovian
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Overview

@ Introduction to Quantum Many-Body Systems
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Quantum many-body systems

As noted previously, the key quantity of a quantum system is wavefunction [¢))
(zero-temperature) or density matrix p (finite-temperature).

If [¢)) and p can not be solved by separation of variables — strong correlations beyond
mean-field theory (MFT)! Examples of MFT include Hartree-Fock, Kohn-Sham density
functional theory, the GW method, Weiss mean-field theory etc.
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Interpretation of strong correlations

Statistics perspective: correlation between . . .
persp Wavefunction perspective: expansion of the

two operators. ) o .
exact wavefunction as an infinite series.

ey {7 (0 BN Tl S e

R (1| O)1h) : zero-temperature
Note (O) = Tr(De5H)

Tr(e=BH)

~ 1: MFT works
%\ < 1: MFT fails!

. finite-temperature

February 21, 2024
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Representative strongly correlated systems

Transverse-field Ising model: quantum phase transitions.

d d—1
A N ninitl | adal
FT LT LT T LT fom=gysleas sloit +ogoh
Figure 7: 1D spin chain.
Note &, and &, are Pauli matrices.

y > 1: ordered phase
|=| = { = 1: quantum critical point — strong correlations!
< 1: disordered phase
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Representative strongly correlated systems

Fermi-Hubbard model (FHM): electron interactions in transition metal oxides.

Hrrm = —tz Z é:'r,aéfﬂ + UZ LALN
(i) @ i

t  |— +oo: free electrons
u — 0: Mott insulator — strong correlations!

Figure 8: A schematic Fermi-Hubbard model.
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Representative strongly correlated systems

Spin defects and strongly-correlated states: emerging candidates for spin qubits in
quantum information science.

Figure 9: Structure and spectrum of negatively charged nitrogen-vacancy center (NV~) in diamond.

First-principles predictions of strongly correlated singlet-states are challenging!
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Resources

Resources

o Dissertation and talk from Prof. Michael Lindsey at Berkeley?
@ An introductory book by Prof. Lin Lin at Berkeley and Prof. Jianfeng Lu at Duke?

@ A self-contained book of quantum many-body theory®

3Lindsey.
#lin2019mathematical.

5stel“anu(:x:i2013n0mequilibrium.
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